Bemærk: Kan ikke leveres før jul.
This book constitutes the refereed proceedings of the 17 International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2016, held in Yangzhou, China, in October 2016.
Bemærk: Kan ikke leveres før jul.
Revised and updated, this concise new edition of the pioneering book on multidimensional signal processing is ideal for a new generation of students.
Bemærk: Kan ikke leveres før jul.
Bemærk: Kan ikke leveres før jul.
The two-volume set LNCS 10132 and 10133 constitutes the thoroughly refereed proceedings... Læs mere
Bemærk: Kan ikke leveres før jul.
This book presents a selection of chapters, written by leading international researchers, related to the automatic analysis of gestures from still images and multi-modal RGB-Depth image sequences.
Bemærk: Kan ikke leveres før jul.
This book constitutes the refereed proceedings of the 14th International... Læs mere
Bemærk: Kan ikke leveres før jul.
?This three-volume set LNCS 10361, LNCS 10362, and LNAI 10363 constitutes... Læs mere
Bemærk: Kan ikke leveres før jul.
Bemærk: Kan ikke leveres før jul.
This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data,... Læs mere
Bemærk: Kan ikke leveres før jul.
Topicsof interest include face and facial landmark detection, face recognition, facialexpression and emotion analysis, facial dynamics analysis, face... Læs mere
Bemærk: Kan ikke leveres før jul.
This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos.
Bemærk: Kan ikke leveres før jul.
This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED). illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem;