Søgning på underkategorier- og emner:
Bemærk: Kan ikke leveres før jul.
This book explains how mathematical tools can be used to solve problems in signal processing. Assuming an advanced undergraduate- or... Læs mere
Bemærk: Kan ikke leveres før jul.
The book comprises a selection of plenary and other lectures given at The First International Workshop On Multidimensional (nD) Systems (NDS_98) held in 1998 in Poland, and is written by leading world specialists in the field.
Bemærk: Kan ikke leveres før jul.
Covers the fundamental and specialized aspects of information-bearing signals in digital form. This title contains information on signal processing... Læs mere
Bemærk: Kan leveres før jul.
This title contains the most up-to-date and comprehensive information on the development of the Charge-Coupled Device (CCD), which makes possible the widespread use of... Læs mere
Bemærk: Kan ikke leveres før jul.
Integrates topics of signal processing from sonar, radar, and medical... Læs mere
Bemærk: Kan ikke leveres før jul.
This book provides a practical guide, complete with accompanying Matlab software, to many different types of polynomial and discrete splines and spline-based wavelets, multiwavelets and wavelet frames in signal and image processing applications.
Bemærk: Kan ikke leveres før jul.
This book first introduces the background of spatial audio reproduction, with different types of audio content and for different types of playback systems.
Bemærk: Kan ikke leveres før jul.
This book presents current trends that are dominating technology and... Læs mere
Bemærk: Kan ikke leveres før jul.
Bemærk: Kan ikke leveres før jul.
This book constitutes the proceedings of the 7th Iberian Conference on... Læs mere
Bemærk: Kan ikke leveres før jul.
This practical guide provides comprehensive information on PIV. The third edition extends many aspects of Particle image Velocimetry, in particular the tomographic PIV method, high-velocity PIV, Micro-PIV, and accuracy assessment.
Bemærk: Kan ikke leveres før jul.
Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data.