Bemærk: Kan leveres før jul.
Forventes på lager: 29-04-2021
Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are “opaque.” Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future.
| Forlag | Springer Nature Switzerland AG |
| Forfattere | Leonida Gianfagna, Antonio Di Cecco |
| Type | Bog |
| Format | Paperback / softback |
| Sprog | Engelsk |
| Udgave | 1st ed. 2021 |
| Udgivelsesdato | 29-04-2021 |
| Første udgivelsesår | 2021 |
| Illustrationer | 103 Illustrations, color; 16 Illustrations, black and white; VIII, 202 p. 119 illus., 103 illus. in color. |
| Originalsprog | Switzerland |
| Sideantal | 202 |
| Indbinding | Paperback / softback |
| Forlag | Springer Nature Switzerland AG |
| Sideoplysninger | 202 pages, 103 Illustrations, color; 16 Illustrations, black and white; VIII, 202 p. 119 illus., 103 |
| Mål | 155 x 235 x 26 |
| ISBN-13 / EAN-13 | 9783030686390 |