Bemærk: Kan leveres før jul.
Forventes på lager: 29-02-2024
This text provides a state-of-the-art treatment of distributional regression, accompanied by real-world examples from diverse areas of application. Maximum likelihood, Bayesian and machine learning approaches are covered in-depth and contrasted, providing an integrated perspective on GAMLSS for researchers in statistics and other data-rich fields.
| Forlag | Cambridge University Press |
| Forfattere | Mikis D. (University of Greenwich) Stasinopoulos, Thomas (Georg-August-Universitat Kneib, Nadja (Technische Universitat Dortmund) Klein, Andreas (Rheinische Friedrich-Wilhelms-Universitat Bonn) Mayr, Gillian Z. (University of Sydney) Heller |
| Type | Bog |
| Format | Hardback |
| Sprog | Engelsk |
| Udgivelsesdato | 29-02-2024 |
| Første udgivelsesår | 2024 |
| Serie | Cambridge Series in Statistical and Probabilistic Mathematics |
| Illustrationer | Worked examples or Exercises |
| Originalsprog | United Kingdom |
| Sideantal | 306 |
| Indbinding | Hardback |
| Forlag | Cambridge University Press |
| Sideoplysninger | 306 pages, Worked examples or Exercises |
| Mål | 186 x 264 x 28 |
| ISBN-13 / EAN-13 | 9781009410069 |