Machine Elements: Analysis and Design (Bog, Hæftet, Engelsk) af Niels L. Pedersen & Peder Klit

Machine Elements: Analysis and Design

(Bog, Hæftet, Engelsk)

Nedsat pris! Machine Elements: Analysis and Design


Bemærk: Kan leveres før jul.

Når du handler på WilliamDam.dk, betaler du den pris du ser.

  • Ingen gebyrer
  • Ingen abonnementer
  • Ingen bindingsperioder

Beskrivelse

Machine Elements Analysis and Design 3rd edition 

 

This book is intended to provide graduate and undergraduate students with basic understanding of machine element theory, and to introduce tools and techniques facilitating design calculations for a number of frequently encountered mechanical elements. The material in the book is appropriate for a course in Machine Elements and/or Mechanical Engineering Design for students who have passed first and second year basic courses in engineering physics, engineering mechanics and engineering materials science. At the end of each chapter in the book, references, which may be useful for further studies of specific subjects or for verification, are given.  


NOTE: The exercise book for this is called Machine Elements Analysis and Design - Problems and it can be purchased separately.


Contents 

Preface to the third edition Contents 

1 Limits, fits and surface properties 

1.1 Introduction 

1.2 Geometrical tolerances

1.2.1 Specifying geometrical tolerances

1.2.2 Toleranced features

1.3 Surface texture 

1.3.1 Surface Texture Parameters  

1.4 Tolerances on lengths, diameters, angles 

1.4.1 Dimensions and tolerances  

1.4.2 Fits  

1.4.3 Functional dimensioning  

1.4.4 Dimension chains  

1.5 The ISO-tolerance system  

1.5.1 Introduction  

1.5.2 Field of application  

1.5.3 Terms and definitions 

1.5.4 Tolerances and deviations  

1.5.5 Preferred numbers  

1.5.6 Standard tolerance grades IT1 to IT16  

1.5.7 Formula for standard tolerances in grades IT5 to IT16  

1.6 Nomenclature  

1.7 References  

2 Springs  

2.1 Introduction 

2.2 The design situation  

2.3 Helical springs 

2.3.1 Formulas for helical springs  

2.3.2 Stress curvature correction factor 

2.3.3 Material properties  

2.3.4 Relaxation  

2.3.5 Types of load  

2.3.6 Dynamic loading  

2.3.7 Compression springs  

2.3.8 Extension springs  

2.4 Belleville springs or coned-disc springs  

2.4.1 Formulas for Belleville springs 

2.5 Helical torsion springs  

2.5.1 Methods of loading  

2.5.2 Binding effects 

2.5.3 Formulas for helical torsion springs 

2.6 Spiral springs

2.6.1 Clamped outer end

2.6.2 Simply supported outer end

2.7 Supplementary literature 

2.8 Nomenclature 

2.9 References 

3 Rolling element bearings 

3.1 Introduction 

3.2 Bearing types 

3.2.1 Available space 

3.2.2 Loads

3.2.3 Combined load 

3.2.4 Misalignment 

3.2.5 Speed 

3.2.6 Stiffness 

3.2.7 Axial displacement 

3.3 Load carrying capacity and life 

3.3.1 Basic load ratings 

3.3.2 Life 

3.3.3 Basic rating life equation 

3.3.4 Requisite basic rating life 

3.3.5 Adjusted rating life equation 

3.3.6 Combination of life adjustment factors a2 and a3 

3.3.7 SKF Life Theory 

3.4 Calculation example 

3.5 Calculation of dynamic bearing loads 

3.5.1 Gear trains

3.5.2 Belt drives

3.5.3 Equivalent dynamic bearing load

3.5.4 Constant bearing load 

3.5.5 Fluctuating bearing load 

3.5.6 Requisite minimum load 

3.6 Selecting static loaded bearing 

3.6.1 Stationary bearing 

3.6.2 Static load rating 

3.6.3 Requisite basic static load rating 

3.7 Radial location of bearings - Selection of fit 

3.8 Bearing lubrication 

3.9 Nomenclature 

3.10 References 

4 Shafts

4.1 Introduction 

4.1.1 Terminology 

4.2 Types of load 

4.3 Shaft design considerations 

4.3.1 Possible modes of failure 

4.4 Static loading 

4.5 Design for fatigue (cyclic load/dynamic load) 

4.5.1 Stress concentration

4.5.2 S-N curve or Wöhler curve 

4.5.3 Estimation of endurance level

4.5.4 Fluctuating load 

4.6 Design for shaft deflections 

4.7 Design for critical shaft speeds 

4.8 Suggested design procedure, based on shaft yielding 

4.9 Nomenclature

4.10 References 

5 Shaft-hub Connections 

5.1 Introduction 

5.2 Positive connections 

5.2.1 Pinned and taper-pinned joints 

5.2.2 Parallel keys and Woodruff Keys 

5.2.3 Splined joints 

5.2.4 Prestressed shaft-hub connections 

5.2.5 Failure of positive connections 

5.3 Connection with force (Transmission by friction) 

5.3.1 Cone interference fit 

5.3.2 Interference fit with spacers

5.3.3 Interference fit (press and shrink fits) 

5.4 Design modification/optimization 

5.4.1 Spline design 

5.5 Nomenclature 

5.6 References 

6 Threaded Fasteners 

6.1 Introduction 

6.2 Characteristics of screw motion

6.3 Types of thread 

6.4 Types of bolts and nuts

6.5 Material specification for bolts and nuts

6.6 Force and torque to preload a bolt

6.7 Deflection in joints due to preload 

6.8 Superposition of preload and working loads

6.9 Failure of bolted connections

6.10 Design modification/optimization 

6.11 Nomenclature 

6.12 References 

7 Couplings and universal joints 

7.1 Introduction to couplings 

7.2 Functional characteristics 

7.2.1 Shaft elongation or shaft division 

7.2.2 Misaligned shafts or angular deviation 

7.2.3 Man-operated engagement or disengagement

7.2.4 Torque-sensitive clutches 

7.2.5 Speed-sensitive clutches 

7.2.6 Directional (one-way) clutches, overrun clutches 

7.3 Permanent torsionally stiff couplings 

7.3.1 Rigid couplings 

7.3.2 Universal joints and other special joints 

7.4 Permanent elastic couplings

7.4.1 General purpose 

7.4.2 Selection procedures 

7.4.3 Damping 

7.4.4 Max coupling torque for squirrel-cage motor 

7.5 Overload couplings and safety couplings 

7.6 Nomenclature 

7.7 References

8 Clutches 

8.1 Friction clutches 

8.1.1 Torque transmission (static) 

8.1.2 Transient slip in friction clutches during engagement 

8.1.3 Dissipated energy in the clutch 

8.1.4 Layout design of friction clutches 

8.2 Automatic clutches 

8.2.1 Speed-sensitive clutches (centrifugal clutches) 

8.2.2 Directional (one-way) clutches. overrun clutches

8.3 Nomenclature 

9 Brakes 

9.1 Drum brakes 

9.1.1 Self-energizing 

9.1.2 Braking torque and friction radius 

9.1.3 Wear and normal pressure for parallel guided shoe 

9.1.4 Wear and normal pressure for non-pivoted long shoe

9.1.5 Wear and normal pressure for pivoted long shoe

9.2 Disc brakes

9.3 Cone brakes 

9.3.1 Uniform pressure model 

9.3.2 Uniform wear model 

9.4 Band brakes 

9.5 Nomenclature 

10 Belt Drives 

10.1 Introduction

10.1.1 Reasons for choosing belt drives 

10.2 The belts 

10.3 Belt drive geometry (kinematics) 

10.4 Belt forces

10.4.1 Flat belt 

10.4.2 V-belt 

10.4.3 Including inertia

10.5 Belt stress (flat belt)

10.6 Optimization of belt-drives

10.7 Plot of the belt forces 

10.8 Nomenclature 

10.9 References 

11 The geometry of involute gears

11.1 Introduction 

11.2 Internal and external gears 

11.3 Gear ratio 

11.4 Gears in mesh 

11.5 Tooth shapes 

11.6 Involute tooth shape basics 

11.7 Basic rack 

11.8 Pitch and module

11.9 Under-cutting 

11.10 Addendum modification (profile shift) 

11.11 Tooth thickness 

11.12 Calculating the addendum modification 

11.13 Radial clearance

11.14 Gear radii 

11.15 Contact ratio 

11.16 Base tangent length

11.17 Helical gears 

11.18 Nomenclature

11.19 References 

12 The strength of involute gears

12.1 Introduction

12.2 General influence factors

12.2.1 Nominal tangential load, FNt

12.2.2 Application factor, KA

12.2.3 Dynamic factor, KV 

12.3 Longitudinal (axial) load distribution factors, KHβ, KFβ

12.3.1 Principles of longitudinal load distributions

12.4 Transverse load distribution factors, KHα, KFα 

12.4.1 Formulas for determination of factors 

12.5 Calculation of surface durability (pitting) 

12.5.1 Fundamental formulas 

12.5.2 Allowable contact stress

12.5.3 Safety factor for contact stress (against pitting)

12.5.4 Zone factor 

12.5.5 Elasticity factor

12.5.6 Contact ratio factor 

12.5.7 Helix angle factor 

12.5.8 Life factor 

12.5.9 Lubrication factor 

12.5.10 Roughness factor 

12.5.11 Speed factor 

12.5.12Work hardening factor

12.6 Calculation of load capacity (tooth breakage) 

12.6.1 Fundamental formulas 

12.6.2 Allowable tooth root stress 

12.6.3 Safety factor for tooth root stress (against tooth breakage) 

12.6.4 Tooth form factor 

12.6.5 Helix angle factor 

12.6.6 Life factor 

12.6.7 Relative notch sensitivity factor, Yδ 

12.6.8 Relative surface condition factor 

12.6.9 Size factor

12.7 Elastohydrodynamic lubrication in gears 

12.8 Design modification/optimization 

12.9 Nomenclature 

12.10 References 

13 2D Joint Kinematics 

13.1 Introduction 

13.2 Joints in 2D 

13.3 Degrees of freedom 

13.4 Position, velocity and acceleration analysis 

13.5 Mechanism design

13.6 Nomenclature 

13.7 References 

Appendix A: Tables with ISO-tolerances and fits 

Appendix B: Stress concentration factors 

B.1 References 

Index 

Læsernes anmeldelser (0)

Alle detaljer

Forlag Polyteknisk Forlag
Forfatter Niels L. Pedersen & Peder Klit
Type Bog
Format Hæftet
Sprog Engelsk
Udgave 3. (01-07-2021)
Oplag 1. (01-07-2021)
Første udgivelsesår 2009
Omslagsillustrator Anne Bjørlie
Originalsprog Engelsk
Sideantal 302
Indbinding Hæftet
Mål og vægt B: 170mm, H: 240mm, D: 15mm, Vægt: 800g
ISBN-13 / EAN-13 9788750201052