Bemærk: Kan ikke leveres før jul.
Forventes på lager: 23-04-2025
Unsupervised domain adaptation (UDA) is a challenging problem in machine learning where the model is trained on a source domain with labeled data and tested on a target domain with unlabeled data.
| Forlag | Springer Verlag, Singapore |
| Forfattere | Jingjing Li, Lei Zhu, Zhekai Du |
| Type | Bog |
| Format | Paperback / softback |
| Sprog | Engelsk |
| Udgivelsesdato | 23-04-2025 |
| Første udgivelsesår | 2025 |
| Serie | Machine Learning: Foundations, Methodologies, and Applications |
| Illustrationer | 44 Illustrations, color; 34 Illustrations, black and white; XVI, 223 p. 78 illus., 44 illus. in color. |
| Originalsprog | Singapore |
| Sideantal | 223 |
| Indbinding | Paperback / softback |
| Forlag | Springer Verlag, Singapore |
| Sideoplysninger | 223 pages, 44 Illustrations, color; 34 Illustrations, black and white; XVI, 223 p. 78 illus., 44 ill |
| Mål | 235 x 155 |
| ISBN-13 / EAN-13 | 9789819710270 |