Bemærk: Kan ikke leveres før jul.
This book contains select chapters on a range of topics in directional statistics, multivariate statistical inference, financial statistics, statistical machine learning and reliability inference.
Bemærk: Kan ikke leveres før jul.
This book describes the state-of-the-art of chemoinformatics, bioinformatics, materials informatics and measurement/metrology informatics to develop drugs with... Læs mere
Bemærk: Kan ikke leveres før jul.
This book discusses the roles of the Internet of Things (IoT) and machine learning (ML) in smart health care, including the integration of cloud computing with IoT and ML for managing healthcare data.
Bemærk: Kan ikke leveres før jul.
This text presents a collection of mathematical exercises with the aim of guiding readers to study topics in statistical physics, equilibrium thermodynamics, information theory, and their various connections.
Bemærk: Kan ikke leveres før jul.
This book introduces cutting-edge methods on security in spectrum management, mobile networks and next-generation wireless networks in the era of artificial intelligence (AI) and machine learning (ML).
Bemærk: Kan ikke leveres før jul.
This book explores the dynamics of how AI (Artificial Intelligence) technology intersects with cybersecurity challenges and threat intelligence as they evolve.
Bemærk: Kan ikke leveres før jul.
This book contains selected papers from the 12th International Conference on Extreme Learning Machines 2022. Extreme learning machines (ELMs) continue to be an important complement to the many deep learning models you can find in the machine learning domain.
Bemærk: Kan ikke leveres før jul.
Bemærk: Kan ikke leveres før jul.
Bemærk: Kan ikke leveres før jul.
Bemærk: Kan ikke leveres før jul.
"Transforming Agricultural Management for a Sustainable Future: Climate Change and Machine Learning Perspectives" is an essential read for anyone interested in the future of agriculture and the role that technology can play in mitigating the impact of climate change.
Bemærk: Kan ikke leveres før jul.
The network add-on method prevents the adversarial examples by training the adversarial example detector.Testing deep neural networks is an effective method to measure the security and robustness of deep learning models.