Søgning på underkategorier- og emner:
Bemærk: Kan ikke leveres før jul.
This book covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single and short book.... Læs mere
Bemærk: Kan ikke leveres før jul.
It covers the creation of datasets in SAS, debugging a program, the overall construction of a SAS program, all DATA Step operations, t-tests,... Læs mere
Bemærk: Kan ikke leveres før jul.
Bemærk: Kan ikke leveres før jul.
This book discusses advanced topics such as R core programing, object oriented R programing, parallel computing with R, and spatial data types. The author leads... Læs mere
Bemærk: Kan ikke leveres før jul.
This book takes the reader through the basics of using the R statistical programming environment for data analysis using a series of case studies based around tasks that answer real research questions using publicly available molecular biology datasets.
Bemærk: Kan ikke leveres før jul.
This book provides a broad overview of GAMLSS methodology and how it is implemented in R. It includes a comprehensive collection of real data examples, integrated code, and figures to illustrate the methods, and is supplemented by a website.
Bemærk: Kan ikke leveres før jul.
Bemærk: Kan ikke leveres før jul.
Bemærk: Kan ikke leveres før jul.
This introductory guide provides a clear detailed explanation of how to present data in tables and graphs using the popular software application SPSS. It is... Læs mere
Bemærk: Kan ikke leveres før jul.
This book explores the tools and techniques to bring about the marriage of structured and unstructured data.
Bemærk: Kan leveres før jul.
The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA, COGARCH, and Point processes.
Bemærk: Kan ikke leveres før jul.
This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data.